Source code for ansys.aedt.toolkits.antenna.backend.antenna_models.patch

# Copyright (C) 2023 - 2024 ANSYS, Inc. and/or its affiliates.
# SPDX-License-Identifier: MIT
#
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from collections import OrderedDict
import math

import ansys.aedt.core.generic.constants as constants
from ansys.aedt.core.generic.general_methods import pyaedt_function_handler
from ansys.aedt.toolkits.common.backend.logger_handler import logger

from ansys.aedt.toolkits.antenna.backend.antenna_models.common import CommonAntenna
from ansys.aedt.toolkits.antenna.backend.antenna_models.common import TransmissionLine


class CommonPatch(CommonAntenna):
    """Provides base methods common to patch antenna."""

    def __init__(self, _default_input_parameters, *args, **kwargs):
        CommonAntenna.antenna_type = "Patch"
        CommonAntenna.__init__(self, _default_input_parameters, *args, **kwargs)
        if "substrate_height" not in kwargs:
            self.substrate_height = constants.unit_converter(
                self.substrate_height, "Length", _default_input_parameters["length_unit"], self.length_unit
            )
        self._transmission_line_calculator = TransmissionLine(self.frequency, self.frequency_unit)

    @property
    def material(self):
        """Substrate material.

        Returns
        -------
        str
        """
        return self._input_parameters.material

    @material.setter
    def material(self, value):
        if self._app:
            if (
                value
                and value not in self._app.materials.mat_names_aedt
                and value not in self._app.materials.mat_names_aedt_lower
            ):
                logger.debug("Material not defined")
            else:
                if value != self.material and self.object_list:
                    for antenna_obj in self.object_list:
                        if (
                            self.object_list[antenna_obj].material_name == self.material.lower()
                            and "coax" not in antenna_obj
                        ):
                            self.object_list[antenna_obj].material_name = value

                self._input_parameters.material = value
                parameters = self.synthesis()
                self.update_synthesis_parameters(parameters)
                self.set_variables_in_hfss()
        else:
            self._input_parameters.material = value

    @property
    def material_properties(self):
        """Substrate material properties.

        Returns
        -------
        str
        """
        return self._input_parameters.material_properties

    @property
    def substrate_height(self):
        """Substrate height.

        Returns
        -------
        float
        """
        return self._input_parameters.substrate_height

    @substrate_height.setter
    def substrate_height(self, value):
        self._input_parameters.substrate_height = value

        if self.object_list:
            parameters = self.synthesis()
            self.update_synthesis_parameters(parameters)
            self.set_variables_in_hfss()

    @pyaedt_function_handler()
    def synthesis(self):
        pass


[docs] class RectangularPatchProbe(CommonPatch): """Manages a rectangular patch antenna with a coaxial probe. This class is accessible through the ``Hfss`` object [1]_. Parameters ---------- frequency : float, optional Center frequency. The default is ``10.0``. frequency_unit : str, optional Frequency units. The default is ``"GHz"``. material : str, optional Substrate material. If the material is not defined, a new material, ``parametrized``, is created. The default is ``"FR4_epoxy"``. outer_boundary : str, optional Boundary type to use. The default is ``None``. Options are ``"FEBI"``, ``"PML"``, ``"Radiation"``, and ``None``. length_unit : str, optional Length units. The default is ``"mm"``. substrate_height : float, optional Substrate height. The default is ``1.575``. parametrized : bool, optional Whether to create a parametrized antenna. The default is ``True``. Returns ------- :class:`aedt.toolkits.antenna.RectangularPatchProbe` Patch antenna object. Notes ----- .. [1] C. Balanis, "Microstrip Antennas," *Antenna Theory*, 2nd Ed. New York: Wiley, 1997. Examples -------- >>> from ansys.aedt.toolkits.antenna.backend.antenna_models.patch import RectangularPatchProbe >>> import ansys.aedt.core >>> app = ansys.aedt.core.Hfss() >>> oantenna1 = RectangularPatchProbe(app) >>> oantenna1.frequency = 12.0 >>> oantenna1.model_hfss() >>> oantenna1.setup_hfss() >>> app.release_desktop(False, False) """ _default_input_parameters = { "name": "", "origin": [0, 0, 0], "length_unit": "mm", "coordinate_system": "Global", "frequency": 10.0, "frequency_unit": "GHz", "material": "FR4_epoxy", "material_properties": {"permittivity": 4.4}, "outer_boundary": "", "substrate_height": 1.575, } def __init__(self, *args, **kwargs): CommonPatch.__init__(self, self._default_input_parameters, *args, **kwargs) self._parameters = self.synthesis() self.update_synthesis_parameters(self._parameters) self.antenna_type = "RectangularPatchProbe"
[docs] @pyaedt_function_handler() def synthesis(self): """Antenna synthesis. Returns ------- dict Analytical parameters. """ parameters = {} length_unit = self.length_unit lightSpeed = constants.SpeedOfLight # m/s freq_hz = constants.unit_converter(self.frequency, "Freq", self.frequency_unit, "Hz") wavelength = lightSpeed / freq_hz if self._app and ( self.material in self._app.materials.mat_names_aedt or self.material in self._app.materials.mat_names_aedt_lower ): mat_props = self._app.materials[self.material] permittivity = mat_props.permittivity.value self._input_parameters.material_properties["permittivity"] = permittivity elif self.material_properties: permittivity = self.material_properties["permittivity"] else: self._app.logger.warning("Material is not found. Create the material before assigning it.") return parameters subPermittivity = float(permittivity) sub_meters = constants.unit_converter(self.substrate_height, "Length", self.length_unit, "meter") patch_width = 3.0e8 / ((2.0 * freq_hz) * math.sqrt((subPermittivity + 1.0) / 2.0)) eff_Permittivity = (subPermittivity + 1.0) / 2.0 + (subPermittivity - 1.0) / 2.0 * math.pow( 1.0 + 12.0 * sub_meters / patch_width, -0.5 ) effective_length = 3.0e8 / (2.0 * freq_hz * math.sqrt(eff_Permittivity)) top = (eff_Permittivity + 0.3) * (patch_width / sub_meters + 0.264) bottom = (eff_Permittivity - 0.258) * (patch_width / sub_meters + 0.8) delta_length = 0.412 * sub_meters * top / bottom patch_length = effective_length - 2.0 * delta_length # eff_WL_meters = wavelength / math.sqrt(eff_Permittivity) k = 2.0 * math.pi / eff_Permittivity G = math.pi * patch_width / (120.0 * math.pi * wavelength) * (1.0 - math.pow(k * sub_meters, 2) / 24) # impedance at edge of patch Res = 1.0 / (2.0 * G) offset_pin_pos = patch_length / math.pi * math.asin(math.sqrt(50.0 / Res)) patch_x = constants.unit_converter(patch_width, "Length", "meter", length_unit) parameters["patch_x"] = patch_x patch_y = constants.unit_converter(patch_length, "Length", "meter", length_unit) parameters["patch_y"] = patch_y feed_x = 0.0 parameters["feed_x"] = feed_x feed_y = constants.unit_converter(offset_pin_pos, "Length", "meter", length_unit) parameters["feed_y"] = feed_y sub_h = self.substrate_height parameters["sub_h"] = sub_h sub_x = constants.unit_converter(1.5 * patch_width + 6.0 * sub_meters, "Length", "meter", length_unit) parameters["sub_x"] = sub_x sub_y = constants.unit_converter(1.5 * patch_length + 6.0 * sub_meters, "Length", "meter", length_unit) parameters["sub_y"] = sub_y coax_inner_rad = constants.unit_converter(0.025 * (1e8 / freq_hz), "Length", "meter", length_unit) parameters["coax_inner_rad"] = coax_inner_rad coax_outer_rad = constants.unit_converter(0.085 * (1e8 / freq_hz), "Length", "meter", length_unit) parameters["coax_outer_rad"] = coax_outer_rad feed_length = constants.unit_converter(wavelength / 6.0, "Length", "meter", length_unit) parameters["feed_length"] = feed_length gnd_x = sub_x gnd_y = sub_y parameters["gnd_x"] = gnd_x parameters["gnd_y"] = gnd_y parameters["pos_x"] = self.origin[0] parameters["pos_y"] = self.origin[1] parameters["pos_z"] = self.origin[2] myKeys = list(parameters.keys()) myKeys.sort() parameters_out = OrderedDict([(i, parameters[i]) for i in myKeys]) return parameters_out
[docs] @pyaedt_function_handler() def model_hfss(self): """Draw rectangular patch antenna with coaxial probe. Once the antenna is created, this method will not be used anymore.""" if self.object_list: logger.debug("This antenna already exists") return False if ( self.material not in self._app.materials.mat_names_aedt and self.material not in self._app.materials.mat_names_aedt_lower ): self._app.logger.warning("Material is not found. Create the material before assigning it.") return False self.set_variables_in_hfss() # Map parameters patch_x = self.synthesis_parameters.patch_x.hfss_variable patch_y = self.synthesis_parameters.patch_y.hfss_variable feed_x = self.synthesis_parameters.feed_x.hfss_variable feed_y = self.synthesis_parameters.feed_y.hfss_variable sub_h = self.synthesis_parameters.sub_h.hfss_variable sub_x = self.synthesis_parameters.sub_x.hfss_variable sub_y = self.synthesis_parameters.sub_y.hfss_variable coax_inner_rad = self.synthesis_parameters.coax_inner_rad.hfss_variable coax_outer_rad = self.synthesis_parameters.coax_outer_rad.hfss_variable feed_length = self.synthesis_parameters.feed_length.hfss_variable gnd_x = self.synthesis_parameters.gnd_x.hfss_variable gnd_y = self.synthesis_parameters.gnd_y.hfss_variable pos_x = self.synthesis_parameters.pos_x.hfss_variable pos_y = self.synthesis_parameters.pos_y.hfss_variable pos_z = self.synthesis_parameters.pos_z.hfss_variable antenna_name = self.name coordinate_system = self.coordinate_system # Substrate sub = self._app.modeler.create_box( origin=["-" + sub_x + "/2", "-" + sub_y + "/2", "0"], sizes=[sub_x, sub_y, sub_h], name="sub_" + antenna_name, material=self.material, ) sub.color = (0, 128, 0) sub.transparency = 0.8 sub.history().props["Coordinate System"] = coordinate_system # Ground gnd = self._app.modeler.create_rectangle( orientation=2, origin=["-" + gnd_x + "/2", "-" + gnd_y + "/2", "0"], sizes=[gnd_x, gnd_y], name="gnd_" + antenna_name, ) gnd.color = (255, 128, 65) gnd.transparency = 0.1 gnd.history().props["Coordinate System"] = coordinate_system # Antenna ant = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + patch_x + "/2", "-" + patch_y + "/2", sub_h, ], sizes=[patch_x, patch_y], name="ant_" + antenna_name, ) ant.color = (255, 128, 65) ant.transparency = 0.1 ant.history().props["Coordinate System"] = coordinate_system void = self._app.modeler.create_circle( cs_plane=2, origin=[feed_x, feed_y, "0"], radius=coax_outer_rad, name="void_" + antenna_name, ) self._app.modeler.subtract(gnd, void, False) feed_pin = self._app.modeler.create_cylinder( orientation=2, origin=[feed_x, feed_y, "0"], radius=coax_inner_rad, height=sub_h, name="feed_pin_" + antenna_name, material="pec", ) feed_pin.color = (255, 128, 65) feed_pin.history().props["Coordinate System"] = coordinate_system feed_coax = self._app.modeler.create_cylinder( orientation=2, origin=[feed_x, feed_y, "0"], radius=coax_inner_rad, height="-" + feed_length, name="feed_coax_" + antenna_name, material="pec", ) feed_coax.color = (255, 128, 65) feed_coax.history().props["Coordinate System"] = coordinate_system coax = self._app.modeler.create_cylinder( orientation=2, origin=[feed_x, feed_y, "0"], radius=coax_outer_rad, height="-" + feed_length, name="coax_" + antenna_name, material="Teflon (tm)", ) coax.color = (128, 255, 255) coax.history().props["Coordinate System"] = coordinate_system port_cap = self._app.modeler.create_cylinder( orientation=2, origin=[feed_x, feed_y, "-" + feed_length], radius=coax_outer_rad, height="-" + sub_h + "/" + str(10), name="port_cap_" + antenna_name, material="pec", ) port_cap.color = (132, 132, 193) port_cap.history().props["Coordinate System"] = coordinate_system p1 = self._app.modeler.create_circle( cs_plane=2, origin=[feed_x, feed_y, "-" + feed_length], radius=coax_outer_rad, name="port_" + antenna_name, ) p1.color = (128, 0, 0) p1.history().props["Coordinate System"] = coordinate_system self.object_list[sub.name] = sub self.object_list[gnd.name] = gnd self.object_list[ant.name] = ant self.object_list[feed_pin.name] = feed_pin self.object_list[feed_coax.name] = feed_coax self.object_list[coax.name] = coax self.object_list[port_cap.name] = port_cap self.object_list[p1.name] = p1 self._app.modeler.move(list(self.object_list.keys()), [pos_x, pos_y, pos_z]) sub.group_name = antenna_name gnd.group_name = antenna_name ant.group_name = antenna_name feed_pin.group_name = antenna_name feed_coax.group_name = antenna_name coax.group_name = antenna_name port_cap.group_name = antenna_name p1.group_name = antenna_name
[docs] @pyaedt_function_handler() def model_disco(self): """Model in PyDiscovery. To be implemented.""" pass
[docs] @pyaedt_function_handler() def setup_disco(self): """Set up the model in PyDiscovery. To be implemented.""" pass
[docs] class RectangularPatchInset(CommonPatch): """Manages a rectangular patch antenna inset fed. This class is accessible through the ``Hfss`` object [1]_. Parameters ---------- frequency : float, optional Center frequency. The default is ``10.0``. frequency_unit : str, optional Frequency units. The default is ``"GHz"``. material : str, optional Substrate material. If the material is not defined, a new material, ``parametrized``, is created. The default is ``"FR4_epoxy"``. outer_boundary : str, optional Boundary type to use. The default is ``None``. Options are ``"FEBI"``, ``"PML"``, ``"Radiation"``, and ``None``. length_unit : str, optional Length units. The default is ``"mm"``. substrate_height : float, optional Substrate height. The default is ``1.575``. parametrized : bool, optional Whether to create a parametrized antenna. The default is ``True``. Returns ------- :class:`aedt.toolkits.antenna.RectangularPatchInset` Patch antenna object. Notes ----- .. [1] C. Balanis, "Microstrip Antennas," *Antenna Theory*, 2nd Ed. New York: Wiley, 1997. Examples -------- >>> from ansys.aedt.toolkits.antenna.backend.antenna_models.patch import RectangularPatchInset >>> import ansys.aedt.core >>> app = ansys.aedt.core.Hfss() >>> oantenna1 = RectangularPatchInset(app) >>> oantenna1.frequency = 12.0 >>> oantenna1.model_hfss() >>> oantenna1.setup_hfss() >>> app.release_desktop(False, False) """ _default_input_parameters = { "name": "", "origin": [0, 0, 0], "length_unit": "mm", "coordinate_system": "Global", "frequency": 10.0, "frequency_unit": "GHz", "material": "FR4_epoxy", "material_properties": {"permittivity": 4.4}, "outer_boundary": "", "substrate_height": 1.575, } def __init__(self, *args, **kwargs): CommonPatch.__init__(self, self._default_input_parameters, *args, **kwargs) self._parameters = self.synthesis() self.update_synthesis_parameters(self._parameters) self.antenna_type = "RectangularPatchInset"
[docs] @pyaedt_function_handler() def synthesis(self): """Antenna synthesis. Returns ------- dict Analytical parameters. """ parameters = {} length_unit = self.length_unit lightSpeed = constants.SpeedOfLight # m/s freq_hz = constants.unit_converter(self.frequency, "Freq", self.frequency_unit, "Hz") wavelength = lightSpeed / freq_hz if self._app and ( self.material in self._app.materials.mat_names_aedt or self.material in self._app.materials.mat_names_aedt_lower ): mat_props = self._app.materials[self.material] permittivity = mat_props.permittivity.value self._input_parameters.material_properties["permittivity"] = permittivity elif self.material_properties: permittivity = self.material_properties["permittivity"] else: self._app.logger.warning("Material is not found. Create the material before assigning it.") return parameters subPermittivity = float(permittivity) patch_width = 3.0e8 / ((2.0 * freq_hz) * math.sqrt((subPermittivity + 1.0) / 2.0)) sub_meters = constants.unit_converter(self.substrate_height, "Length", self.length_unit, "meter") eff_Permittivity = (subPermittivity + 1.0) / 2.0 + (subPermittivity - 1.0) / 2.0 * math.pow( 1.0 + 12.0 * sub_meters / patch_width, -0.5 ) effective_length = 3.0e8 / (2.0 * freq_hz * math.sqrt(eff_Permittivity)) top = (eff_Permittivity + 0.3) * (patch_width / sub_meters + 0.264) bottom = (eff_Permittivity - 0.258) * (patch_width / sub_meters + 0.8) delta_length = 0.412 * sub_meters * top / bottom patch_length = effective_length - 2.0 * delta_length # eff_WL_meters = wavelength / math.sqrt(eff_Permittivity) k = 2.0 * math.pi / eff_Permittivity G = math.pi * patch_width / (120.0 * math.pi * wavelength) * (1.0 - math.pow(k * sub_meters, 2) / 24) # impedance at edge of patch Res = 1.0 / (2.0 * G) inset_distance_meter = patch_length / math.pi * math.asin(math.sqrt(50.0 / Res)) # quarterwave_imped = math.sqrt(50.0 * Res) uStrip = self._transmission_line_calculator.microstrip_calculator(sub_meters, subPermittivity, 50.0, 150.0) microstrip_width = uStrip[0] microstrip_length = uStrip[1] patch_x = constants.unit_converter(patch_width, "Length", "meter", length_unit) parameters["patch_x"] = patch_x patch_y = constants.unit_converter(patch_length, "Length", "meter", length_unit) parameters["patch_y"] = patch_y sub_h = self.substrate_height parameters["sub_h"] = sub_h sub_x = constants.unit_converter(1.5 * patch_width + 6.0 * sub_meters, "Length", "meter", length_unit) parameters["sub_x"] = sub_x sub_y = constants.unit_converter(2.1 * (microstrip_length + patch_length / 2), "Length", "meter", length_unit) parameters["sub_y"] = sub_y inset_distance = constants.unit_converter( patch_length / 2 - inset_distance_meter, "Length", "meter", length_unit ) parameters["inset_distance"] = inset_distance microstrip_length = constants.unit_converter(microstrip_length, "Length", "meter", length_unit) microstrip_width = constants.unit_converter(microstrip_width, "Length", "meter", length_unit) inset_gap = round(microstrip_width / 2, 3) parameters["inset_gap"] = inset_gap feed_width = round(microstrip_width, 3) parameters["feed_width"] = feed_width feed_length = round(microstrip_length, 3) parameters["feed_length"] = feed_length parameters["pos_x"] = self.origin[0] parameters["pos_y"] = self.origin[1] parameters["pos_z"] = self.origin[2] myKeys = list(parameters.keys()) myKeys.sort() parameters_out = OrderedDict([(i, parameters[i]) for i in myKeys]) return parameters_out
[docs] @pyaedt_function_handler() def model_hfss(self): """Draw a rectangular patch antenna inset fed. Once the antenna is created, this method is not used anymore.""" if self.object_list: self._app.logger.warning("This antenna already exists.") return False if ( self.material not in self._app.materials.mat_names_aedt and self.material not in self._app.materials.mat_names_aedt_lower ): self._app.logger.warning("Material is not found. Create the material before assigning it.") return False self.set_variables_in_hfss() # Map parameters patch_x = self.synthesis_parameters.patch_x.hfss_variable patch_y = self.synthesis_parameters.patch_y.hfss_variable sub_h = self.synthesis_parameters.sub_h.hfss_variable sub_x = self.synthesis_parameters.sub_x.hfss_variable sub_y = self.synthesis_parameters.sub_y.hfss_variable inset_distance = self.synthesis_parameters.inset_distance.hfss_variable inset_gap = self.synthesis_parameters.inset_gap.hfss_variable feed_width = self.synthesis_parameters.feed_width.hfss_variable feed_length = self.synthesis_parameters.feed_length.hfss_variable pos_x = self.synthesis_parameters.pos_x.hfss_variable pos_y = self.synthesis_parameters.pos_y.hfss_variable pos_z = self.synthesis_parameters.pos_z.hfss_variable antenna_name = self.name coordinate_system = self.coordinate_system # Substrate sub = self._app.modeler.create_box( origin=["-" + sub_x + "/2", "-" + sub_y + "/2", "0"], sizes=[sub_x, sub_y, sub_h], name="sub_" + antenna_name, material=self.material, ) sub.color = (0, 128, 0) sub.transparency = 0.8 sub.history().props["Coordinate System"] = coordinate_system # Ground gnd = self._app.modeler.create_rectangle( orientation=2, origin=["-" + sub_x + "/2", "-" + sub_y + "/2", "0"], sizes=[sub_x, sub_y], name="gnd_" + antenna_name, ) gnd.color = (255, 128, 65) gnd.transparency = 0.1 gnd.history().props["Coordinate System"] = coordinate_system # Antenna ant = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + patch_x + "/2", "-" + patch_y + "/2", sub_h, ], sizes=[patch_x, patch_y], name="ant_" + antenna_name, ) ant.color = (255, 128, 65) ant.transparency = 0.1 ant.history().props["Coordinate System"] = coordinate_system cutout = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + feed_width + "/2" + "-" + inset_gap, patch_y + "/2" + "-" + inset_distance, sub_h, ], sizes=[feed_width + "+2*" + inset_gap, feed_length], name="cutout_" + antenna_name, ) cutout.color = (255, 128, 65) cutout.history().props["Coordinate System"] = coordinate_system self._app.modeler.subtract(ant, cutout, False) feed = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + feed_width + "/2", patch_y + "/2" "-" + inset_distance, sub_h, ], sizes=[feed_width, feed_length + "+" + inset_distance], name="feed_" + antenna_name, ) feed.color = (255, 128, 65) feed.history().props["Coordinate System"] = coordinate_system self._app.modeler.unite([ant, feed]) p1 = self._app.modeler.create_rectangle( orientation=1, origin=[ "-" + feed_width + "/2", patch_y + "/2" + "+" + feed_length, "0", ], sizes=[sub_h, feed_width], name="port_lump_" + antenna_name, ) p1.color = (255, 128, 65) p1.history().props["Coordinate System"] = coordinate_system self.object_list[sub.name] = sub self.object_list[gnd.name] = gnd self.object_list[ant.name] = ant self.object_list[p1.name] = p1 self._app.modeler.move(list(self.object_list.keys()), [pos_x, pos_y, pos_z]) sub.group_name = antenna_name gnd.group_name = antenna_name ant.group_name = antenna_name p1.group_name = antenna_name
[docs] @pyaedt_function_handler() def model_disco(self): """Model in PyDiscovery. To be implemented.""" pass
[docs] @pyaedt_function_handler() def setup_disco(self): """Set up the model in PyDiscovery. To be implemented.""" pass
[docs] class RectangularPatchEdge(CommonPatch): """Manages a rectangular patch edge antenna. This class is accessible through the ``Hfss`` object [1]_. Parameters ---------- frequency : float, optional Center frequency. The default is ``10.0``. frequency_unit : str, optional Frequency units. The default is ``"GHz"``. material : str, optional Substrate material. If the material is not defined, a new material, ``parametrized``, is created. The default is ``"FR4_epoxy"``. outer_boundary : str, optional Boundary type to use. The default is ``None``. Options are ``"FEBI"``, ``"PML"``, ``"Radiation"``, and ``None``. length_unit : str, optional Length units. The default is ``"mm"``. substrate_height : float, optional Substrate height. The default is ``1.575``. parametrized : bool, optional Whether to create a parametrized antenna. The default is ``True``. Returns ------- :class:`aedt.toolkits.antenna.RectangularPatchEdge` Patch antenna object. Notes ----- .. [1] C. Balanis, "Microstrip Antennas," *Antenna Theory*, 2nd Ed. New York: Wiley, 1997. Examples -------- >>> from ansys.aedt.toolkits.antenna.backend.antenna_models.patch import RectangularPatchEdge >>> import ansys.aedt.core >>> app = ansys.aedt.core.Hfss() >>> oantenna1 = RectangularPatchEdge(app) >>> oantenna1.frequency = 12.0 >>> oantenna1.model_hfss() >>> oantenna1.setup_hfss() >>> app.release_desktop(False, False) """ _default_input_parameters = { "name": "", "origin": [0, 0, 0], "length_unit": "mm", "coordinate_system": "Global", "frequency": 10.0, "frequency_unit": "GHz", "material": "FR4_epoxy", "material_properties": {"permittivity": 4.4}, "outer_boundary": "", "substrate_height": 1.575, } def __init__(self, *args, **kwargs): CommonPatch.__init__(self, self._default_input_parameters, *args, **kwargs) self._parameters = self.synthesis() self.update_synthesis_parameters(self._parameters) self.antenna_type = "RectangularPatchEdge"
[docs] @pyaedt_function_handler() def synthesis(self): """Antenna synthesis. Returns ------- dict Analytical parameters. """ parameters = {} length_unit = self.length_unit lightSpeed = constants.SpeedOfLight # m/s freq_hz = constants.unit_converter(self.frequency, "Freq", self.frequency_unit, "Hz") wavelength = lightSpeed / freq_hz if self._app and ( self.material in self._app.materials.mat_names_aedt or self.material in self._app.materials.mat_names_aedt_lower ): mat_props = self._app.materials[self.material] permittivity = mat_props.permittivity.value self._input_parameters.material_properties["permittivity"] = permittivity elif self.material_properties: permittivity = self.material_properties["permittivity"] else: self._app.logger.warning("Material is not found. Create the material before assigning it.") return parameters subPermittivity = float(permittivity) patch_width = 3.0e8 / ((2.0 * freq_hz) * math.sqrt((subPermittivity + 1.0) / 2.0)) sub_meters = constants.unit_converter(self.substrate_height, "Length", self.length_unit, "meter") eff_Permittivity = (subPermittivity + 1.0) / 2.0 + (subPermittivity - 1.0) / 2.0 * math.pow( 1.0 + 12.0 * sub_meters / patch_width, -0.5 ) effective_length = 3.0e8 / (2.0 * freq_hz * math.sqrt(eff_Permittivity)) top = (eff_Permittivity + 0.3) * (patch_width / sub_meters + 0.264) bottom = (eff_Permittivity - 0.258) * (patch_width / sub_meters + 0.8) delta_length = 0.412 * sub_meters * top / bottom patch_length = effective_length - 2.0 * delta_length # eff_WL_meters = wavelength / math.sqrt(eff_Permittivity) k = 2.0 * math.pi / eff_Permittivity G = math.pi * patch_width / (120.0 * math.pi * wavelength) * (1.0 - math.pow(k * sub_meters, 2) / 24) # impedance at edge of patch Res = 1.0 / (2.0 * G) # offset_pin_pos = patch_length / math.pi * math.asin(math.sqrt(50.0 / Res)) quarterwave_imped = math.sqrt(50.0 * Res) uStrip1 = self._transmission_line_calculator.microstrip_calculator( sub_meters, subPermittivity, quarterwave_imped, 90.0 ) microstrip_edge_width = uStrip1[0] microstrip_edge_length = uStrip1[1] uStrip2 = self._transmission_line_calculator.microstrip_calculator(sub_meters, subPermittivity, 50.0, 150.0) microstrip_width = uStrip2[0] microstrip_length = uStrip2[1] patch_x = constants.unit_converter(patch_width, "Length", "meter", length_unit) parameters["patch_x"] = patch_x patch_y = constants.unit_converter(patch_length, "Length", "meter", length_unit) parameters["patch_y"] = patch_y sub_h = self.substrate_height parameters["sub_h"] = sub_h sub_x = constants.unit_converter(1.5 * patch_width + 6.0 * sub_meters, "Length", "meter", length_unit) parameters["sub_x"] = sub_x sub_y = constants.unit_converter( 2.1 * (microstrip_length + microstrip_edge_length + patch_length / 2), "Length", "meter", length_unit, ) parameters["sub_y"] = sub_y edge_feed_width = constants.unit_converter(microstrip_edge_width, "Length", "meter", length_unit) parameters["edge_feed_width"] = edge_feed_width edge_feed_length = constants.unit_converter(microstrip_edge_length, "Length", "meter", length_unit) parameters["edge_feed_length"] = edge_feed_length feed_width = constants.unit_converter(microstrip_width, "Length", "meter", length_unit) parameters["feed_width"] = feed_width feed_length = constants.unit_converter(microstrip_length, "Length", "meter", length_unit) parameters["feed_length"] = feed_length parameters["pos_x"] = self.origin[0] parameters["pos_y"] = self.origin[1] parameters["pos_z"] = self.origin[2] myKeys = list(parameters.keys()) myKeys.sort() parameters_out = OrderedDict([(i, parameters[i]) for i in myKeys]) return parameters_out
[docs] @pyaedt_function_handler() def model_hfss(self): """Draw a rectangular patch edge antenna inset fed. Once the antenna is created, this method is not used anymore.""" if self.object_list: self._app.logger.warning("This antenna already exists.") return False if ( self.material not in self._app.materials.mat_names_aedt and self.material not in self._app.materials.mat_names_aedt_lower ): self._app.logger.warning("Material is not found. Create the material before assigning it.") return False self.set_variables_in_hfss() # Map parameters patch_x = self.synthesis_parameters.patch_x.hfss_variable patch_y = self.synthesis_parameters.patch_y.hfss_variable sub_h = self.synthesis_parameters.sub_h.hfss_variable sub_x = self.synthesis_parameters.sub_x.hfss_variable sub_y = self.synthesis_parameters.sub_y.hfss_variable edge_feed_width = self.synthesis_parameters.edge_feed_width.hfss_variable edge_feed_length = self.synthesis_parameters.edge_feed_length.hfss_variable feed_width = self.synthesis_parameters.feed_width.hfss_variable feed_length = self.synthesis_parameters.feed_length.hfss_variable pos_x = self.synthesis_parameters.pos_x.hfss_variable pos_y = self.synthesis_parameters.pos_y.hfss_variable pos_z = self.synthesis_parameters.pos_z.hfss_variable antenna_name = self.name coordinate_system = self.coordinate_system # Substrate sub = self._app.modeler.create_box( origin=["-" + sub_x + "/2", "-" + sub_y + "/2", "0"], sizes=[sub_x, sub_y, sub_h], name="sub_" + antenna_name, material=self.material, ) sub.color = (0, 128, 0) sub.transparency = 0.8 sub.history().props["Coordinate System"] = coordinate_system # Ground gnd = self._app.modeler.create_rectangle( orientation=2, origin=["-" + sub_x + "/2", "-" + sub_y + "/2", "0"], sizes=[sub_x, sub_y], name="gnd_" + antenna_name, ) gnd.color = (255, 128, 65) gnd.transparency = 0.1 gnd.history().props["Coordinate System"] = coordinate_system # Antenna ant = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + patch_x + "/2", "-" + patch_y + "/2", sub_h, ], sizes=[patch_x, patch_y], name="ant_" + antenna_name, ) ant.color = (255, 128, 65) ant.transparency = 0.1 ant.history().props["Coordinate System"] = coordinate_system edge_feed = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + edge_feed_width + "/2", "0", sub_h, ], sizes=[edge_feed_width, patch_y + "/2" + "+" + edge_feed_length], name="cutout_" + antenna_name, ) edge_feed.color = (255, 128, 65) edge_feed.history().props["Coordinate System"] = coordinate_system feed = self._app.modeler.create_rectangle( orientation=2, origin=[ "-" + feed_width + "/2", patch_y + "/2" + "+" + edge_feed_length, sub_h, ], sizes=[feed_width, feed_length], name="feed_" + antenna_name, ) feed.color = (255, 128, 65) feed.history().props["Coordinate System"] = coordinate_system self._app.modeler.unite([ant, edge_feed, feed]) p1 = self._app.modeler.create_rectangle( orientation=1, origin=[ "-" + feed_width + "/2", patch_y + "/2" + "+" + edge_feed_length + "+" + feed_length, "0", ], sizes=[sub_h, feed_width], name="port_lump_" + antenna_name, ) p1.color = (255, 128, 65) p1.history().props["Coordinate System"] = coordinate_system self.object_list[sub.name] = sub self.object_list[gnd.name] = gnd self.object_list[ant.name] = ant self.object_list[p1.name] = p1 self._app.modeler.move(list(self.object_list.keys()), [pos_x, pos_y, pos_z]) sub.group_name = antenna_name gnd.group_name = antenna_name ant.group_name = antenna_name p1.group_name = antenna_name
[docs] @pyaedt_function_handler() def model_disco(self): """Model in PyDiscovery. To be implemented.""" pass
[docs] @pyaedt_function_handler() def setup_disco(self): """Set up the model in PyDiscovery. To be implemented.""" pass